If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+2x=135
We move all terms to the left:
4x^2+2x-(135)=0
a = 4; b = 2; c = -135;
Δ = b2-4ac
Δ = 22-4·4·(-135)
Δ = 2164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2164}=\sqrt{4*541}=\sqrt{4}*\sqrt{541}=2\sqrt{541}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{541}}{2*4}=\frac{-2-2\sqrt{541}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{541}}{2*4}=\frac{-2+2\sqrt{541}}{8} $
| 2q-q-10=20 | | -f/3=-5 | | -6x-13=-8x+1 | | 3x^2=59x | | 18+6p=84 | | v-1/3=4/3 | | 10z+11=4z-43 | | 2a+1=9a-6 | | 5h+9h=28 | | 6y-46=5y-30 | | 2y+11=7y+51 | | x^2(x^4+2x^2+243)=0 | | -7+g=-11 | | 2u=10u-88 | | 75y=125 | | 2x+3=6-5x | | -7+g=11 | | 12+0.75n=24 | | (X÷8)-3=x÷5 | | -3+r=9 | | (3x+5)+x+75=180 | | x^2(x^4-2x^2-243)=0 | | t+13=8t-8 | | f-1/9=5/9 | | 3(2x-5)-9=-4x+6 | | 2n+6-8n=33-11n+13 | | 4p=2p+60 | | 3=y÷4.8 | | y=3E-06*2194500-6.3 | | (3/5)x-27=24 | | 19= 9t9t | | 3n+7-8=34-11n+15 |